More on “Scud Running”

Clarifying my position on flying in low visibility conditions.

Note: A version of this post originally appeared in AOPA’s Hover Power blog. If you’re a helicopter pilot, you owe it to yourself to check in there regularly to read great articles written by experienced helicopter pilots.

In my post about long cross-country flights for AOPA’s Hover Power blog (which I republished here), I brought up the topic of scud running. Apparently, my account of a flight into low visibility conditions, which I referred to as “scud running,” set off a lot of alarms with readers. One reader seemed to think that I “endorsed” scud running. (I don’t.) Another reader found it necessary to share Accuweather definitions and a video that described “scud clouds.” (I don’t recommend Accuweather as a source of weather information per FAR Part 135.213(a).) Someone called for a “definitive statement from you declaring NO to EVER scud running.”

It’s that last comment that got me thinking about what some readers think about the reality of flying. Fortunately, two other readers who are obviously experienced pilots came forward and offered comments that clarified my position on flying in limited visibility situations. I’d like to elaborate on those comments, provide an example situation for consideration, and review the FARs regarding helicopters and weather minimums.

My Definition of “Scud Running”

Let’s start with exactly what I’m talking about when I use the phrase “scud running.” Reader Dan Schiffer nailed it when he responded to one of the commenters. He said, in part:

It’s a term most pilots use to discuss low visibility conditions that we all are faced with occasionally due to changing weather.

To me, scud running is any situation where low ceilings or low visibility require you to alter your route around weather. And yes, low ceilings are a part of low visibility — after all, if you’re in mountainous terrain, don’t low ceilings obscure your visibility of mountainsides and peaks?

The FAA discusses scud running in its Pilot’s Handbook of Aeronautical Knowledge:

This occurs when a pilot tries to maintain visual contact with the terrain at low altitudes while instrument conditions exist.

I discuss this in more detail later, when I cover weather minimums for helicopter pilots.

Neither my definition nor the FAA’s have anything to do with a so-called “scud clouds.” I can’t find any mention of these clouds in either the Aeronautical Information Manual (AIM) or Pilot’s Handbook of Aeronautical Knowledge. I did find a definition in AC 00-6A, Aviation Weather:

scud – Small detached masses of stratusfractus clouds below a layer of higher clouds, usually nimbostratus.

A Google search brought up a similar, but more detailed Wikipedia definition:

a type of fractus cloud, are low, detached, irregular clouds found beneath nimbostratus or cumulonimbus clouds. These clouds are often ragged or wispy in appearance. When caught in the outflow (downdraft) beneath a thunderstorm, scud clouds will often move faster than the storm clouds themselves. When in an inflow (updraft) area, scud clouds tend to rise and may exhibit lateral movement ranging from very little to substantial.

For the record, I’m definitely not endorsing flying anywhere near a thunderstorm or cumulonimbus cloud. The FAA says to maintain 20 miles separation from thunderstorms and that’s a pretty good rule of thumb.

So, in summary, when a pilot uses the phrase “scud running,” it usually means flying in low visibility conditions and has nothing to do with so-called scud clouds.

A Real-Life Example

I can only assume that readers who expect me to definitively state that a pilot should never ever engage in scud running as defined above either:

  • Haven’t had much time flying.
  • Haven’t gone on many long cross-country trips.
  • Fly in a place where visibility is never an issue.

Flying in low visibility is not something I want to do, but sometimes it’s something I have to do.

A Note about flying in remote areas

I’ve done just about all of my flying in the west: Arizona (where I learned to fly), Nevada, Utah, Colorado, New Mexico, California, Idaho, Oregon, and Washington (where I now live). In the 3,300 hours I’ve logged, I’d say that at least half of them were in relatively remote areas. Because of this, it’s difficult for me to remember that most pilots fly in more populated areas, where they’re seldom out of sight of a town or building.

As difficult as this might be for some people to believe, there are still many places in the U.S. where a helicopter pilot can fly for over an hour and not see a single sign of human life. I’ve flown 90 minutes in a straight line somewhere between Elko, NV and Burns, OR without seeing a building or a vehicle on one of the few dirt roads — just herds of wild horses running at the sound of my approach. I’ve flown over the high desert of the Arizona Strip, crossing just one dirt road over an 85-mile stretch of forest and canyons. I’ve flown the length of Lake Powell from the Glen Canyon Dam to Canyonlands National Park in the winter, passing just three seasonally closed marinas along the lake’s blue water and canyon mouths. I fly with a SPOT personal tracking device for a reason; if I go down out there — even by choice in a precautionary landing — no one would find me without some help.

So while “scud running” might seem like an unreasonable risk when you’re in an area with towns and airports every five or ten miles, it could be a matter of life and death when you’re out in the middle of nowhere and need to get somewhere safe. It’s not a black and white situation with a right or wrong answer.

Let’s look at an example. Suppose you’ve done all your flight planning and believe you can make a 2-hour flight to Point A, which is a rather remote place, without any weather/visibility concerns. You start the flight and things are fine for the first ninety minutes or so. Then the weather starts deteriorating. Maybe the ceiling drops or there are scattered rain showers that lower horizontal visibility in various places along your path. You can see well enough in your general forward direction and easily find paths around those showers that will get you closer to your destination, but things might be worse up ahead. Who knows? Even a call to Flight Service — if you can reach them on the radio in mountainous terrain with low ceilings preventing you from climbing — might not be able to provide adequate weather information if the area is remote enough.

Here’s where experience, judgement, and personal minimums come in. As helicopter pilots, we have three options:

  • Alter your route to completely avoid the weather, possibly ending up at a different destination. This might be the best option if there is an alternative destination and you have enough fuel to get there. But if your intended destination is in a remote place and you’re only 30 minutes out, there might not be an alternative.
  • Land and wait out the weather. Heck, we’re helicopter pilots and can land nearly anywhere. There’s nothing wrong with landing to wait out a storm. Remember, in an emergency situation, you can land if necesary, even in an area where landing is normally prohibited, such as a National Park, National Forest, Wilderness Area. (Again, I’m not recommending that you land in any of these places in non-emergency situations.) Do you have gear on board for an extended or perhaps overnight stay? This is another good reason to bring food on a cross-country flight.
  • Continue toward your intended destination. At the risk of sounding like I’m a proponent of “get-there-itis,” the destination is a known that’s a lot more attractive than the unknowns offered by the first two options.

There are many variables that will determine which option you pick. Here are a few of them:

  • Experience. If you’ve encountered situations like this before, you have a better idea of your comfort level than if you haven’t. You’ve likely also established personal minimums, possibly fine-tuned by real scares. The more experience, the better you’ll be able to deal with the situation and make the right decision.
  • Alternatives. If there is an alternative destination within range that you can safely reach with available fuel plus reserves, why wouldn’t you go for it?
  • Available fuel. There’s a saying in aviation: “The only time you have too much fuel is when you’re on fire.” One of the challenges of planning a long cross-country flight is making sure you have enough fuel on board to deal with unplanned route changes. But when flying to extremely remote areas, you might need almost all the fuel you have on board to get there. That definitely limits your options.
  • Actual weather conditions. If you can see a path ahead of you with potential landing zones and escape routes along the way, you’re far more likely to succeed at moving toward the destination than if the weather is closing in all around you. Never continue flight to the point where you don’t have at least the option to land and wait it out. The trick is to turn back or land before that happens; experience will be your guide. Likewise, if what you’re seeing tells you that the weather is localized and better conditions are just up ahead — perhaps you see sunlight on the ground beyond those heavy showers? — continuing flight might be the best option.

So what’s the answer? There isn’t one. As the pilot in command, you are the decision maker. You need to evaluate and re-evaluate the situation as it develops. You need to make a decision based on your knowledge and experience. If in doubt, choose the safest option.

Clouds
With mist, rain, and low clouds, would you keep flying?

Weather Minimums

Despite the severe clear weather I usually see around my home in Central Washington State, weather minimums are on my mind lately. Why? Mostly because my Part 135 check ride is coming up and I’m always a bit hazy on them. Spending most of my flying career in Arizona didn’t do me any favors when it comes to knowing when it’s legal to fly — or being able to identify different types of fog by name, for that matter.

So let’s look at weather minimums as they apply to helicopters.

FAR 91.155, Basic VFR weather minimums sets forth weather minimums for each type of airspace. I’m going to concentrate on Class G airspace, mostly because that’s the type of airspace I’ve been talking about.

According to the FARs, a helicopter may legally operate under VFR in Class G airspace during the day with a minimum of 1/2 mile visibility clear of clouds. Conditions less than that are technically IMC, thus invoking the FAA’s definition of “scud running” discussed above.

But what if visibility in your desired flight path is 1/4 mile or less but visibility 30° to the right is a mile or more? That is possible with localized showers or very low scattered clouds. Are you allowed to fly? I think that if you asked five different FAA Inspectors, you’d get a bunch of different answers. But if you crashed while flying in those conditions, the NTSB report would claim you were flying VFR in IMC.

What’s the answer? Beats me.

Scud Happens

What I do know is this: If all your preflight planning indicates that weather and visibility will not be an issue during a flight but unexpected weather conditions come up, you need to react to them. As helicopter pilots, we’re lucky in that we have options to avoid flying into clouds and the terrain they obscure. At the same time, we don’t want to push that luck and get into a situation we can’t get out of safely. Experience, skill, and wisdom should guide us.

Scud running is never a good idea, but sometimes it’s the best idea under unforeseen circumstances. It’s your job as a pilot to (1) avoid getting into a dangerous situation and (2) make the best decision and take the best actions to complete a flight safely.

Doors-Off Flying

Things to keep in mind.

Note: A version of this post originally appeared in AOPA’s Hover Power blog. If you’re a helicopter pilot, you owe it to yourself to check in there regularly to read great articles written by experienced helicopter pilots.

Summer is on its way and, in most parts of the northern hemisphere, that means warm weather will soon be upon us. Not every pilot is fortunate enough to fly a helicopter with air conditioning. When I lived and flew in Arizona, it was common for me to take all of the doors off my R44 in May and leave them off until September. It was that hot every single day. (And no, I don’t miss it one bit.)

Of course, pilots don’t need warm weather as a reason to take the doors off. Sometimes the mission you’re flying requires it. Aerial photography is a great example — there aren’t too many photographers who would be willing to pay hundreds of dollars an hour to fly with you and be forced to shoot photos through highly reflective, possibly scratched Plexiglas.

Door Off
For this memorable video flight, the videographer sat behind me with his door off.

When you remove the doors from a helicopter, you add an element of risk to the flight. Fortunately, the risk can be controlled if you fully understand it and do what’s necessary to reduce or eliminate it. That’s what I want to touch upon in this post.

Loose objects

The most obvious risk is from loose objects blowing around the cockpit or, worse yet, exiting the aircraft. This is a real danger, especially if an object hits the tail rotor or someone/something on the ground.

Want some examples of how dangerous this can be?

  • NTSB WPR14CA363
    “While in cruise flight an unsecured jacket departed the helicopter through an open window. The tail rotor drive shaft sheared as a result of the jacket’s contact with the tail rotors. The pilot subsequently initiated a forced landing to an orchard where during landing, the main rotors struck and separated the tailboom.”
  • NTSB WPR13CA071
    “Prior to the flight, the doors were removed in order to make it easier for the passengers to board and exit the helicopter…. After the two passengers were transported to a work site location, the right rear passenger exited the helicopter and placed the headset on the hook located behind the front seats. After departing the site, about 3 to 5 minutes later while en route at an elevation of about 1,000 feet above ground level, the pilot felt something strike the helicopter. After landing and upon inspecting the helicopter, the pilot discovered that the right rear headset was missing and that the leading edge of the tail rotor had been damaged.”
  • NTSB LAX03TA150
    “While in cruise flight, the back door on the helicopter opened, and a flight jacket that had been unsecured in the back seat departed the helicopter and became entangled in the tail rotor assembly. The tail rotor assembly subsequently separated from the tail boom, and the pilot was unable to maintain control of the helicopter.”
  • NTSB FTW86LA047
    “The pilot failed to assure the cabin door was properly closed before flight, or the cabin door just popped open during flight, allowing an unsecured life vest to blow out the door and into the tail rotor blades. This resulted in the entire tail rotor assembly departing the helicopter.”

(As some of these examples show, you don’t need to have the doors removed to have an unsecured item depart the helicopter and get into the tail rotor.)

Robinson Helicopter warns about this in Safety Notice SN-30, “Loose Objects Can be Fatal.” It recommends that pilots firmly latch all doors and even goes so far to recommend that pilot never fly with a left door removed. (Remember, the tail rotor is on the left side in a Robinson and many other helicopter models.)

I know that my engine starting check list includes an item to assure that loose items are secure. Yours should, too. While this is always important, it’s vital for doors-off flight.

Be sure you warn passengers of the danger of an item exiting the aircraft. Even something as small as a lens cap or lens hood can do significant damage to the tail rotor in flight.

Never Exceed Speed

You might not realize this, but your helicopter’s never exceed speed might be reduced with the doors off. On a Robinson R44, for example, Vne is reduced to 100 knots with the doors off, even if other conditions such as altitude and temperature would allow a faster speed.

My understanding from the Robinson Factory Safety Course is that this reduction of Vne is for structural reasons. (If someone knows better, please correct me in the comments.) There’s more buffeting wind inside the cabin with one or more doors off than with all doors on.

Check the Pilot Operating Handbook for the aircraft you fly the next time you remove doors to make sure you don’t operate beyond doors-off Vne.

Securing Passengers

This might seem like a no-brainer, but if you’re going to remove doors, your passengers had better be secured in their seats with either seat belts or harnesses.

Because some of my aerial photography or video clients like a greater range of movement in their seats than seat belts allow, I have a mountain climbing harness with a suitable strap for securing it to the aircraft frame. I make this available to clients as an option if they don’t have their own. Under no circumstances do I allow my passengers to fly without being secured, especially when their doors are off.

Keep in mind that while a photographer might use a harness to secure himself in the aircraft, you must make sure he knows how to release the harness from the aircraft in the event of an emergency — just as your preflight briefing must tell passengers how to release their seat belts.

Dangling Seat Belts

Of course, it was my generous offering of a harness to a photographer that resulted in more than $2,000 of damage to my aircraft when he used the harness but failed to secure the seat belt at his seat. The seat belt buckle dangled outside the aircraft for the duration of our 90-minute video flight chasing racing trucks over desert terrain. On landing, the passenger side fuel tank and area just outside the door frame had at least 50 dings and paint chips in it. How he didn’t hear it repeatedly striking the aircraft near his head is something I’ll never figure out.

Of course, it was my fault for not catching this prior to starting up and taking off. Expensive lesson learned.

Conclusion

While I don’t think there’s anything wrong with taking the doors off a helicopter prior to flight, it does give the pilot more responsibilities to assure that everything is secure and all passengers are properly briefed.

Or isn’t that something we’re already supposed to be doing?

Maximum Performance Takeoffs and Judgement Calls

Just because you can perform a maneuver, doesn’t mean you should.

Note: A version of this post originally appeared in AOPA’s Hover Power blog. If you’re a helicopter pilot, you owe it to yourself to check in there regularly to read great articles written by experienced helicopter pilots.

In the summer of 2014, I was part of a helicopter rides gig at an airport event. There were three of us in Robinson R44 helicopters, working out of the same rather small landing zone, surrounded on three sides by parked planes and spectators. We timed our rides so that only one of us was on the ground at a time, sharing a 3-person ground crew consisting of a money person and two loaders. Yes, we did hot loading. (Techniques for doing that safely is fodder for an entirely different blog post.) The landing zone was secure so we didn’t need to worry about people wandering into our flight path or behind an idling helicopter.

The landing zone opened out into the airport taxiway, so there was a perfect departure path for textbook takeoffs: 5-10 feet off the ground to 45 knots, pitch to 60, and climb out. It was an almost ideal setup for rides and we did quite a few.

One of the pilots, however, was consulting a different page of the textbook: the one for maximum performance takeoffs. Rather than turning back to the taxiway and departing over it, he pulled pitch right over the landing zone, climbed straight up, and then took off toward the taxiway, over parked planes and some spectators. Each time he did it, he climbed straight up a little higher before moving out.

I was on my way in each time he departed and I witnessed him do this at least four times before I told him to stop. (I was the point of contact for the gig so I was in charge.) His immediate response on the radio was a simple “Okay.” But then he came back and asked why he couldn’t do a maximum performance takeoff.

It boggled my mind that he didn’t understand why what he was doing was not a good idea. The radio was busy and I kept it brief: “Because there’s no reason to.”

The Purpose

The Advanced Flight Maneuvers chapter of the FAA’s Helicopter Flying Handbook (FAA-H-8083-21A; download for free from the FAA) describes a maximum performance takeoff as follows:

A maximum performance takeoff is used to climb at a steep angle to clear barriers in the flightpath. It can be used when taking off from small areas surrounded by high obstacles. Allow for a vertical takeoff, although not preferred, if obstruction clearance could be in doubt. Before attempting a maximum performance takeoff, know thoroughly the capabilities and limitations of the equipment. Also consider the wind velocity, temperature, density altitude, gross weight, center of gravity (CG) location, and other factors affecting pilot technique and the performance of the helicopter.

This type of takeoff has a specific purpose: to clear barriers in the flight path. A pilot might use it when departing from a confined landing zone or if tailwind and load conditions make a departure away from obstacles unsafe.

The Risks

This is an “advanced” maneuver not only because it requires more skill than a normal takeoff but because it has additional risks. The Helicopter Flying Handbook goes on to say:

In light or no wind conditions, it might be necessary to operate in the crosshatched or shaded areas of the height/velocity diagram during the beginning of this maneuver. Therefore, be aware of the calculated risk when operating in these areas. An engine failure at a low altitude and airspeed could place the helicopter in a dangerous position, requiring a high degree of skill in making a safe autorotative landing.

Deadman's Curve
Height Velocity diagram for a Robinson R44 Raven II. Flying straight up puts you right in the “Deadman’s Curve.”

And this is what my problem was. The pilot had purposely and unnecessarily decided to operate in the shaded area of the height velocity diagram with passengers on board over an airport ramp area filled with other aircraft and spectators.

Seeing what he was doing automatically put my brain into “what if” mode. If the engine failed when the helicopter was 50-75 feet off the ground with virtually no forward airspeed, that helicopter would come straight down, likely killing everyone on board. As moving parts came loose, they’d go flying through the air, striking aircraft and people. There were easily over 1,000 people, including many children, at the event. My imagination painted a very ugly picture of the aftermath.

What were the chances of such a thing happening? Admittedly very low. Engine failures in Robinson helicopters are rare.

But the risks inherent in this type of takeoff outweigh the risks associated with a normal takeoff that keeps the helicopter outside the shaded area of the height velocity diagram. Why take the risk?

Just Because You Can Do Something Doesn’t Mean You Should

This all comes back to one of the most important things we need to consider when flying: judgment.

I know why the pilot was doing the maximum performance takeoffs: he was putting on a show for the spectators. Everyone thinks helicopters are cool and everyone wants to see helicopters do something that airplanes can’t. Flying straight up is a good example. This pilot had decided to give the spectators a show.

While there’s nothing wrong with an experienced pilot showing off the capabilities of a helicopter, should that be done with passengers on board? In a crowded area? While performing a maneuver that puts the helicopter in a flight regime we’re taught to avoid?

A responsible pilot would say no.

A September 1999 article in AOPA’s Flight Training magazine by Robert N. Rossier discusses “Hazardous Attitudes.” In it, he describes the macho attitude. He says:

At the extreme end of the spectrum, people with a hazardous macho attitude will feel a need to continually prove that they are better pilots than others and will take foolish chances to demonstrate their superior ability.

Could this pilot’s desire to show off in front of spectators be a symptom of a macho attitude? Could it have affected his judgment? I think it is and it did.

Helicopters can perform a wide range of maneuvers that are simply impossible for other aircraft. As helicopter pilots, we’re often tempted to show off to others. But a responsible pilot knows how to ignore temptation and use good judgment when he flies. That’s the best way to stay safe.